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oi ABSTRACT
o

4 |Lubricant jet flow impingement and penetration depth into a gear

tooth space were measured at 4920 and 2560 RPM using a 8.89 cm (3.5 inch)

pitch diameter 8 pitch spur gear at oil pressures from 7x10
4 to 41x104

N/m 2 (10 psi to 60 psi). A high speed motion picture camera was used

with xenon and high speed stroboscpqic lights to slow down and stop the

motion of the oil jet so that the impingemen depth could be determined.

An analytical model was developed for the vectorial impingement depth

and for the impingement depth with tooth space windage effects included.

The windage effects on the oil jet were small for oil drop sie greater

than .0076 cm (.003 inches). The analytical impingement depth compared

favorably with experimental results above an oil jet pressure of 7x10
4

N/m2 (10 psi). Some of this oil jet penetrates further into the tooth

space after impingement. Much of this pos impingement oil is thrown

out of the tooth space without further contacting the gear teeth.

*General Electric Co., Marine Turbine and Gear Products, Member ASIME

**NASA-Lewis Research Center, Member ASME



NOMENCLATURE

A Horizontal tooth space distance from impingement point, m(inches)

at Tangential acceleration, m/sec2 (ft/sec )

ar Radial acceleration, m/sec2 (ft/sec2)

B Backlash of gear set Pd m(inches)

B Horizontal tooth space distance to impingement point, m(inches)

Cd Drag coefficient for air

d Pitch diameter of gear, m(inches)

do  Diameter of oil droplet, m(inches)

F xy, Forces in x, y and z direction, N(lb)

g Acceleration due to gravity, m/sec2 (ft/sec2)

H Measured impingement depth, m(inches)

Hv  Vectorial impingement depth, m(inches)

Hw Windage impingement depth, m(inches)

H' Approximate vectorial impingement depth, m(inches)
V

N Number of teeth

n Rotational speed, RPM

Ap Differential pressure between oil and ambient, N/m2 (psi)

Aph Differential pressure for pitch line depth, N/m
2 (psi)

Apw Differential pressure for working depth, N/m 2 (psi)

Pd Diametral pitch

R Outside radius of gear, m(inches)

r Pitch radius of gear, mn(inches)

t Time relative to a, sec
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t' Time relative to b, sec

t Time of flight from a to H , sec
w w

v Resultant jet velocity, m/sec (ft/sec)

Ve Eddy current velocity, m/sec (ft/sec)

vg Gear velocity, m/sec (ft/sec)

vj Oil jet velocity, m/sec (ft/sec)

VP Gear pitch line velocity, m/sec (ft/sec)

Vr Radial velocity, m/sec (ft/sec)

v Tangential tooth space droplet windage velocity, m/sec (ft/sec)

v' Tangential boundary layer droplet windage velocity, m/sec (ft/sec)
t

x t Yt Coordinates of droplet, m(inches)

Xw, Yw Coordinates of droplet at impingement, m(inches)

B Vectorial angle of droplet, degrees

So  Vectorial angle of droplet at R, degrees

y Weight density N/m3 (lb/ft3)

6m Maximum boundary layer thickness, m(inches)

8 Impingement angle, degrees

Pa Density of air, kilogram/m
3 (slugs/ft3)

Po Density of oil, kilogram/m
3 (slugs2/ft3)

SGear tooth pressure angle, degrees

w Angular velocity of gear, radians/sec
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INTRODUCTION

The design of gear sets depends on at least three separate

failure criteria. These are bending fatigue, surface fatigue or

pitting, and lubrication failure or breakdown. Of these failure

criteria, the least understood is the failure of the gears due to

improper lubrication and cooling. The best known criteria for

evaluating the lubrication failure mode is to analyze the prob-

ability of the gear drive experiencing scoring or scuffing [1].

This failure mode is associated with the breakdown of elastohydro-

dynamic and boundary lubricant films on the gear tooth surface [2].

The temperature of the gear tooth surfaces has an important if not

controlling effect upon this phenomenon. Hence, cooling of gears

must be accomplished without allowing excessive surface temperature

to initiate the scoring mode of failure. Another very important

aspect of the cooling phenomena in gears is that it is a controlling

factor in determining the mismatch in parallelism between wide faced

high-speed,high horsepower double helical drives. These drives are

usually found in large marine and industrial power plant applications.

As a first step in understanding the cooling phenomena in gears,

it is important to understand how oil penetrates into the gear tooth

spaces under dynamic conditions. This is necessary in order to determine

how much of the impinging oil is involved in the cooling and lubrication

processes and how much of the lubricant is "flung-off". In addition, it

is important for the design engineer to be able to specify a sufficient
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oil jet pressure to assure adequate oil jet penetration into the root

region of the gear teeth. The oil jet "impingement depth" is the

point where the lubricant jet collides with the gear tooth while the

"penetration depth" is the maximum depth of lubricant penetration after

impingement. The penetration depth is usually larger than the impinge-

ment depth. An analytical model, enabling the engineer to make this

determination, was developed by McCain and Alsandor [3] for a

high-speed Ryder gear tester. The analysis was not verified experi-

mentally. Further, [3] does not include the effects of windage

which may be an important factor in the penetration of the jet of oil

into the tooth root region,

It was indicated in [4] that the oil jet after impingement with the

gear tooth surface splits up into two streams, one of which goes

further down the tooth surface. If this were true, then adequate

cooling could have been obtained with lower oil jet pressure than

that needed for full impingement to the tooth root.

The objectives of the research reported herein is to (1) develop

a kinematic tooth space entry model of a jet of oil through gear teeth

and (2) compare the analytical model with experiment test results. In

order to accomplish these objectives, experimental work was performed

to study the penetration and "fling off" of a jet of oil entering gear

teeth using high-speed photography. Gear speed and oil jet pressure

were varied. An analytical model was developed considering the trajectory

of an oil jet into a dynamic gear set, considering windage effects.
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APPARATUS, SPECIMENS, AND PROCEDURES

Test Apparatus

The lubricant fling off tests were performed in the NASA-Lewis

Research Center gear test apparatus shown in Fig. 1 and described

more fully in [5]. This test rig uses the four-square prin-

ciple of loading the test gears. Load is applied to the gears by

a hydraulic loading system.

The test gears were 8 diamptrial pitch , having a 8.89-cm (3.5-inches)

pitch diameter, a 20 degree contact angle and a whole depth of 0.762 cm

(0.300 inches). The gears were made with a very wide face width to

allow for the coverage of light and oil spray for test conditions.

The gear material was a low carbon steel.

A specially designed test gear coveri was made for the fling

off tests. The cover has two windows 90-degrees apart for admitting

light to the test gears and a viewing window in front of the gears

for viewing or photographing the fling-off phenomenon. The viewing

window and light windows are protected from oil splash by shielding.

These windows are constantly swept by a thin film of high velocity

air blown across the windows to keep them free of oil for good light

passage. V-jet, oil nozzles are located behind each of the light

windows and spray a thin fan shaped stream of oil onto the gear teeth

parallel to the gear axis. The nozzle used for these tests had an

800 spray angle and a 0.11 cm (0.043 in) diameter orifice. In all test

conditions the oil jet was either a continuous stream or large droplets.
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A large direct current power supply provides power for the

one thousand watt xenon lamp used to illuminate the lubricant. The

light from the zenon lamp is passed through a condenser lense to

give a parallel light, it then passes through a cylindrical lense

to bring the light into focus as a narrow slit of light. The light,

which is reflected by a 45-degree mirror, passes through the light

window and crosses the fan shaped oil stream at 90.

The lubricant used in the tests was a clear mineral oil to

which was added approximately ten percent by volume of white lithopone

pigment to give it the appearance of milk, When the narrow band of

intense light crossed the fan of oil containing the white pigment

a bright line of oil was illuminated so that it could be photographed

with a high-speed camera.

A high-speed air cooled stroboscopic light is placed close to

the window to light up the gear teeth so that the position of the

oil jet can be determined in relation to the gear teeth. The strobo-

scopic system has a timer that prevents burn out of the flash tube.

A high-speed Hycam movie camera was used to photograph the oil

film through a 45-degree mirror and the gear box cover window.

Test Procedure

The test lubricant was first used as a plain lubricant but as

more light was required for the high-speed movie film, a method was

needed to improve the lighting of the oil jet with the xenon lamp.

It was decided after some investigation to use a white pigament
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of very fine particles in the lubricant to reflect the light. The

lubricant was then mixed with the white pigment and put into the

lubrication tank and kept in circulation during each test to prevent

settling.

The xenon lamp was started and the maximum power setting obtained

to give maximum light. The condenser lense and the cylindrical lense

were then positioned to focus the xenon light into a very high

intenisty narrow beam of light about .8 mm (.032 inch) thick and 3.8 cm

(1.5 inches) wide at the gear tooth top land surface.

Several tests were run at different test conditions. The gear

speeds were 4920 and 2560 rpm. The camera was run at a speed that

would synchronize with each gear tooth space and then at one half and

one fourth the tooth synchronized speed. The lower camera speeds were

run to give more light per frame for the film. This gave film speeds of

2300, 1150, and 575 frames per second for the 4920 rpm tests and 1150,

575 and 287 frames per second for the 2560 rpm tests. The oil jet pressure

was varied for each speed from 7x104 to 41xi04 N/m2 (10 psi to 60 psi) to

give various oil jet impingement depths into the gear tooth space.

With the xenon lamp on, the gear speed set and oil jet pressure

set, the high-speed camera was started and allowed to attain the

desired speed. When the camera had attained the set speed, the high-

speed stroboscope was turned on for one half second at the high speeds

and for one second at the lower speeds.

The film was developed and individual frames printed that would

show the position of the illuminated oil at the various test conditions.
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From these individual frames and the moving film strips, the depth

of oil jet penetration into the gear tooth space was determined. Also,

the way the oil jet was affected by the moving gear tooth was observed

to determine what happened to the oil film on the gear teeth during

impingement.

Analytical Approach

Tracing the locus of the trajectory of a droplet of the cooling-

oil through a moving gear tooth space is a very complex task. Generally,

the oil-jet trajectory will have the appearance as shown in Fig. 2

relative to a stationary nozzle and as shown in Fig. 3 relative to

the gear. It is assumed in this paper that the oil-jet nozzle is

directed radially inward and toward gear center. A nozzle directed

otherwise in a specific practical application is applicable only in

terms of a velocity component in the radial direction. The oil-jet

will continue on its path from the nozzle untilit encounters the

windage boundary layer and subsequently enters the tooth space as

shown in Fig. 3.

It will be noticed that the oil jet ligaments and droplets are

turned slightly by the boundary layer velocity component v'. The

velocity profile of the windage boundary layer is shown in Fig. 4.

The separation line tilts into the tooth space at an angle of

approximately 15* [6]. All of the air in the tooth space,

below the separation line, and past the tooth top land

trailini edge "a", is assumed to be moving at the gear pitch
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line velocity v . The jet (or droplets) will continue to gain an
g

increased windage velocity component vt as it progresses toward

the root diameter of the gear and collides with the tooth profile

at x (and angle 8 at depth H , Fig. 2) or misses the tooth entirely

and passes out of the tooth space at angle 6 . Obviously, angle 8
o

must be smaller than 0 or the oil jet fails to cool the tooth profile
o

and gear cooling is restricted primarily to the top land ab as shown

in Fig. 3 (where the jet is moving relative to the gear).

The chance of the lubricant droplets missing the tooth profile

entirely are likely only at very shallow depths of penetration and

when the droplet sizes are extremely small (say below 1 mil in enuiva.

lent diameter). Thus, as will be shown, tooth space windage may be

an important consideration in determining the jet impingement depth

H when the jet spray is highly atomized or inadequate supply pressure

is provided.

It is necessary to have a logical reference point to define as

time zero'(t = 0) in order to systemize the analysis of this problem.

The trailing edge of the top land (point "a" in Fig. 4) has been so

selected. This topic will be much further developed in the section

on "effects of tooth space windage" on impingement.

The remainder of the analysis will concentrate primarily on the

effects of "space windage" on the depth of impingement required to

determine the extent of cooling surface that can be provided to the

cooling-oil in specific applications.
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Eddy currents within the tooth space (as shown in Fig. 4) can

exist. However, since it is anticipated that the velocities v ofe

these eddies are relatively small, development of a model will not

be considered herein. "End windage", shown in Fig. 5, is where the

gear teeth act as an axial-radial flow fan. This effect coupled with

helix angle effects can in extreme cases, be very important. However,

this effect is not within the scope of the present analysis.

Depth of Imin-ement Without Windage

Fig. 6 is a schematic of a vectorial model for oil jet pene-

tration without windage. From this figure,

A=H v tan4 (1)

= H cote = Hv (2)v
tan6

and + B= 1 (r + 2tan + B) =H (tan + ) (3)

Pd 2 2

where
v v = r = 2rn. d8 P -(4)
g p 60 2(12)

From the Bernoulli ecuation

v2 + 0 = 0 + so that

2g

vj = 13 =13= p ft/sec (Ap in PSIG), (5)

Combining equations (4) and (5),

v v-
g = nd = g (6)

V 2977 v v
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The velocity of approach before impingement is

V = v2 + v ft/sec (7)

The depth of impingement can now be formulated from Eq. (3):

H = 1.5708 + 2tan + B/2 (8)
Pd ( nd + tan)

2977 V/p

when 4= 200 and B = .060 (@ 1 Pd)

IH = 2.33
vnd

Pd ( nd + .364) (9)
2977

or as a good approximation at = 200 and neglecting the pressure

angle in denominator for large high speed gears:

H' 2.33 (2977) /\A 6900 r
S(Pdd) n n N (10)

where: N = number of teeth = Pdd

If the desired H is known, then the required Ap can be found by

returning to the original expression eq. (1) above for + + B so that:

w + 2 tanO + B/2 = Pd H (tan + nd
v 2977 /ApT-)

and

2
ad F H vP d nd

2 B (11)2977 [ + B + (2 - HvPd) tan~

2 2 v d_3

It should be noted that when

(2 < HvP < 2~ ) "working depth" at 1 Pd, so that if
v d- 2tan
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the backlash B is neglected:

2nd 2 (nd)2  x 106 (12)
Pw =  2977() ]  5.466

2

and when (1 < HvP < 1 + B )_ depth to pitch line at 1 Pd , likewise:
V - 2tan

--2

h (13)
2977 (n + tan )(

2

and so by accepting the approximation of ea. (13) for 200 pressure angle

gears:

Ph -r nd \2 (nd)2  x 10-6
h 5 7 60  33.2(14)

In subsequent sections this impingement depth will be named

"vectorial depth" (H ) in order to distinguish it from the "windage

depth" (H w). As will be shown also in subsequent sections ecuation (8)

for H should be considered a good formula to use at the preliminary

design stage to determine the performance of an oil-jet being supplied

at a known oil pressure Ap. When the desired impingement depth lv is

specified and the nozzle pressure required to obtain the vectorial

impingement depth is desired, equation (11) can be used to calculate

the required Ap.

Effects of Tooth Space Windage

Considering the motion of the oil droplets with respect to windage

in the tooth space in Fig. 6 requires the following fundamental equations

describing the kinetics of the problem.
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Fx = Cd 7d2  (V -V ) 27d 3

4 d do Pa 2 t - Po 6o at =0 (15)

2 2 6
IF =C 2 d 3  =0

Cd av r 4p d a 0 (16)
I---o - r2 6

It is assumed that EF can be neglected in spur gears as az

second order effect.

Equation (15) and (16) are solved for xt and yt, in terms of

of the time of flight t to impingement. The point of impingement

of the oil drop trajectory and the tooth profile are computed by

determining the time it takes for the approaching gear tooth to

catch the droplet trajectory in the x direction when the coordinates

for the gear tooth and the oil drop trajectory in the y direction are

coincident. The resulting time equation is:

a (n+ 8+4tan ) = tan4Zn(l+vat w ) + En(l+vg atw) (17)
2P

where: a C from equations (15) and (16) (18)

4 do po

It will be noted that the time of flight tw at impingement x , Yw

cannot be solved explicity, but must be solved implicity using an

iteration process. A mathematical series approximation to equation (17)

can be provided to determine the approximate time of flight.

Subsequent to solving equation (17) the coordinages of the impinge-

ment point xw , yw are provided in equation (19) and (20) below.

_1 En(l+v atw) (19)

Yw = In (vj atw+l) (20)
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Equations (19) and (20) can be used to calculate the coordinate

trajectory by substituting t in place of t thus arriving at the

coordinates yt and xt . It should be clear that for the sake of

simplification that this model deals with a rack tooth profile

instead of an actual involute gear. This will usually not cause

a significant error in the coordinants of a droplet trajectory,

especially for large gears. For small gears it becomes very

necessary to calculate the actual depth from the top of the tooth

Hw taking the circular motion of the outside diameter of the gear

or pinion into account. This can be accomplished from Fig. 2 as

follows: R - [(R Y )2 + x2 ]  (21)
w= 0 ow + (21)

When equation (21) provides a zero or negative answer the droplet

has obviously missed the tooth profile.

RESULTS AND DISCUSSION

Analytical Results

Using equation (21), the depth of impingement H into the gear

tooth space as a function of speed is shown in Fig. 7. Since the

gear used for the calculations has a small radius, the effect of

speed is more severe than it would be in a very large gear. The

calculations for Fig. 7 were performed using a .0076 mn (3 mil) drop

size (do ) as a result, windage for this size drop would have a very

small effect on the depth of impingement for the analytical results

shown in Fig. 8.
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Fig. 8 shows the effect of drop size on the windage 
impingement

depth H . The 104000 RPM speed was selected so that two curves 
could

be plotted at three different pressures farther apart 
than at the

slower speeds. The depth of impingement has been plotted as a

dimensionless parameter Hw/Hv so that the figure represents the

effect of drop size on the deviation from the vectorial model. It

will be noticed that there is very little effect for drop sizes larger

than about .0076 cm (.003 inches). At drop sizes below about .0013 cm

(.5 mil) the effect of drop size becomes very drastic at 
any pressure.

The same general effect occurs at all speeds.

Fig. 9 is the droplet trajectory plotted along the depth yt and

pitch line distance xt for various gear speeds. A fixed jet nozzle

pressure of 14x10 N/m2 (20 psi) has been selected for these calculations.

This pressure provides realistic results at all four speeds for the

gear size considered. Figs. 7 and 9 help emphasize the necessity of

having adequate nozzle supply pressure commensurate with the speed of

operation to provide the maximum amount of cooling possible 
for the

gear size under consideration.

Experimental Results

Fig. 11 shows oil jet penetration into the tooth space at

4920 RPM, 18.6x104 N/m2 (27 psi) nozzle pressure and 575 frames/sec

using the xenon and stroboscopic lights. Fig. lla shows the beginning

of oil jet penetration into the tooth space. The effects of windage

on the oil jet stream can be seen bending it to the right in the
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direction of rotation. Fig. llb shows the oil jet at impingement

with the gear tooth. This figure shows a close agreement with the

theoretical impingement depth lower boundary shown in Fig. 6. This

figure also shows the jet being broken up due to windage.

Fig. 12 illustrates the total penetration of the oil particles

before and aftertooth impingement. Fig. 121) was photographed with

the xenon lamp at 2560 RPM 13x104 N/m2 (19 psi) and 1200 frames/sec.

This figure shows the impingement depth and post impingement trajectory

of the oil particles further into the tooth space. These post impinge-

ment particles are much smaller. A large percentage of these particles

are carried out of the tooth space without further contact with the teeth

thereby providing some lubrication but very little cooling. Fig 124which

was photographed at 4920 RPM 14x104 N/m2 (20 psi) no7zzle pressure and

100 frames/sec. shows the post impingement trajectory more clearly.

Fig. 13 was photographed at 2560 RPI, 9x104 N/m2 (13 psi) with

the xenon and storobscopic lamps. Fig. 13a shows the oil jet penetrating

into tooth space prior to impingement. It also illustrates the absence

of windage effects on the jet stream such as bending and breaking up of

the oil jet. Fig. 13b illustrates what happens to the oil jet just at

tooth impingement. The oil is seen breaking up in small particles as it

bounces off the tooth surface. This refutes the hypothesis of continuous

flow to the tooth root according to the Schach model [7]. This model [7]

and [4] say that in all cases the oil divides into two streams, one of

which flows alone the tooth surface to the root.
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Comparison of Experimental and Analytical Results

Fig. 10 is a plot of calculated and experimental impingement

depth versus jet nozzle pressure for gear speeds of 2560 RPM and

4920 RPM. At both speeds there is good agreement between the calculated

and experimental impingement depths at the higher pressures. However,

at the lower pressures, there is considerable difference between the

calculated and experimental impingement depths, Most of this difference

in impingement depth is due to viscous losses in the nozzle with the

very viscous oil used. A small loss is due to windage effects not

considered in this paper.

SUMMARY

Lubrication tests were conducted in the NASA-Lewis Research

Center gear test apparatus modified for high speed photography of

gear tooth lubrication. Oil jet lubrication was photographed with

a high speed motion picture camera at gear speed of 4920 and 2560 RPM

and oil jet pressures from 7x104 to 41x104 N/m2 (10 psi to 60 psi).

The oil jet was illuminated with a 1000 watt xenon lamp and the

gear teeth were illuminated with a high speed stroboscopic light

so that oil jet impingement depth could be determined from the film.

An analytical model which included windage effects was developed

and the experimental results compared with the analytical model.
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The following results were obtained.

I. The analytical model provides good agreement with the

experimental impingement depth.

2. Small drops of oil (less than .0076 mm (.003 inches))

will be affected by gear windage. For this reason best lubrication

is provided when the oil jet is not atomired.

3. The nozzle pressure must be at least 7x10
4 N/m2 (10 psi)

to get good impingement depth predicted by the analytical model.

4. At low oil jet pressures, penetration into the tooth space

is only slightly greater than the impingement depth. However, much

of this oil is thrown out of the tooth space without further contacting

the gear tooth profiles. Thus, most of the cooling function is accom-

plished above the impingement point.
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Figure 10. - Calculated and experimental impingement depth versus oil jet
pressure at 4920 and 2560 rpm.
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Figure 11. - Oil jet penetrating tooth space and impinging Figure 12. - Oil jet impingment and subsequent pene-
gear tooth; speed, 4920 rpm; oil pressure, 10.5x10 4 N/m2  tration; xenon light only; (a) 4920 rpm; 14x10 4 N/m2
(15 psi); xenon and stroboscopic light. (20 psi); (b) 2560 rpm; 13x10 4 N/m2 (19 psi).

Figure 13. - Oil jet penetrating tooth space and impinging
gear tooth; speed, 2560 rpm (9x10 4 N/m2 (13 psi); xenon
and stroboscopic light. NASA-Lewis
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